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Abstract: The authors propose an improved decision-based detail-preserving variational method (DPVM) for removal of
random-valued impulse noise. In the denoising scheme, adaptive centre weighted median filter (ACWMF) is first ameliorated
by employing the variable window technique to improve its detection ability in highly corrupted images. Based on the
improved ACWMF, a fast iteration strategy is used to classify the noise candidates and label them with different noise marks.
Then, all the noise candidates are restored one-time by weight-adjustable detail-preserving variational method. The weights
between the data-fidelity term and the smooth regularisation term of the convex cost-function in DPVM are decided by the
noise marks. After minimisation, the restored image is obtained. Extensive simulation results show that the proposed method
outperforms some existing algorithms, both in vision and quantitative measurements. Moreover, our method is faster than
some decision-based DPVM. Therefore it can be ported into practical application easily.
1 Introduction

Images are often corrupted by impulse noise which is due
to errors generated in noisy sensors and communication
channels during image acquisition and transmission [1].
It is necessary to remove the impulse noise to guarantee
good performance of subsequent image processes such as
edge detection, image segmentation and object tracking.
Impulse noise can be categorised into two types based on
the noise values. One is the fixed-value impulse noise
which is also called ‘salt-and-pepper’ noise with a large
grey level like 255 and a small value 0 [2]. The other is the
random-valued impulse noise with a random grey level
uniformly distributed in the interval like [0, 255] [3]. It is
much easier to remove salt-and-pepper noise because the
differences in grey levels between a noisy pixel and its
noise-free neighbours are significant most of the times.
Some literatures [4–6] have obtained good restoration
results in case of salt-and-pepper noise. However, for
random-valued impulse noise, the differences are not so
great most of the time hence it is much more difficult to
remove them. In this paper, we focus on the restoration for
random-valued impulse noise.

The median filter was once a very effective approach for
random noise removal because of its denoising power and
computational efficiency [1]. However, it processes every
pixel in the image identically, which spoils a lot of details
after denoising. To make matters worse, when the noise
level is very high, the median filter cannot work well since
there are too many corrupted pixels in the local area.
Owing to this, a lot of researchers try to detect noise first
and then only process the corrupted pixels while preserving
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the grey levels of the uncorrupted ones. It is called a
decision-based scheme. In the past decades, some effective
decision-based random-valued impulse noise removal
methods have been proposed such as adaptive centre
weighted median filter (ACWMF) [7], noise map-based
median filter (NMMF) [8], thresholding noise-free ordered
mean filter (TNOMF) [9], directional weighted median filter
(DWMF) [10] and so on. ACWMF utilises the centre-
weighted median filter [11] that varies centre weights to
realise impulse detection by using the differences defined
between the outputs of centre-weighted median filter and
the current pixel of concern. In NMMF, the impulse
detection algorithm uses a weighted filtering technique to
obtain the noise map. This process is operated iteratively to
locate the final positions of noisy pixels. TNOMF employs
the Dempster–Shafer evidence theory to determine whether
the pixel is noisy or not. In DWMF, four main directions in
the filter window are considered separately. Its impulse
detector makes use of the differences between the current
pixel and its neighbours aligned with the four directions.
There is no doubt that these methods have achieved good
performance in impulse detection. However, when it comes
to image restoration under noise, only median filter or
modified median filter is adopted. Besides, some methods
[7–9] fail to detect lots of noisy pixels in high noise levels.

In the late 1990s, a new class of methods, partial
differential equation-based methods, had been developed
broadly in image processing. In image denoising, the
denoised image is the solution of an optimisation problem
composed of a data-fidelity term and a smooth
regularisation term. Two representative techniques
belonging to the variational scheme are total variation
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[12–16] and the detail-preserving variational method
(DPVM) [17, 18]. Unlike median filter, these filters can
preserve more edges or details during minimisation of the
cost-function. If the decision-based scheme is employed it
will undoubtedly outperform the median-based scheme.
Therefore some researchers combine a ‘good’ noise detector
with a variational approach-based noise restorer [19]. We
call this method as ACWMF-DPVM for short. It first uses
the ACWMF to identify the noisy pixels and then restores
these noise candidates using the DPVM. The simulation
results are indeed better than those by median-based filters.
However, unfortunately, this process needs to be operated
iteratively to get the final result. In each iteration, it uses
different thresholds in the ACWMF to get noise candidates
and then restores them by the DPVM which is a time-
consuming minimisation problem. In practice, four
iterations are needed so that the whole denoising process is
slow. Besides, its denoising capability is limited by the
accuracy of the noise detector ACWMF. When the noise
level is higher than 40%, some noticeable noise patches are
clearly visible in the restored image.

In order to improve the method proposed in [19], we do
some work mainly in three aspects. First, the variable
window technique is employed in the ACWMF to improve
its noise detection ability for highly corrupted images.
Second, we give different marks for different classes of
noise candidates. The mark indicates the degree to which a
noisy pixel is different from its local neighbours in the grey
level. Third, instead of carrying out four DPVM in the
whole denoising process, we employ DPVM only once to
restore all the noise candidates, altering the value of trade-
off between the data-fidelity term and the smooth
regularisation term according to the noise mark. Besides,
we offer a method to estimate the noise level of a corrupted
image. Hence, our denoising method is not restricted to the
simulated corrupted images alone. The experimental results
show that the proposed method has a better noise removal
capability than the ACWMF–DPVM and some
representative denoising algorithms, especially in highly
corrupted images. Moreover, its time complexity is much
lower than the ACWMF–DPVM. Hence, our method
extends the practical application of the idea of combining a
good noise detector with the variational approach-based
noise restorer.

The outline of the paper is as follows. In Section 2, the
methods ACWMF, DPVM and ACWMF–DPVM are
reviewed and analysed. In Section 3, our method is
described in four parts. The simulation and results are
shown in Section 4. The conclusion is given in Section 5.

2 Reviews and analysis

In this section, the basic methods ACWMF [7] and DPVM
[17, 18] are reviewed in the first place. Then, we give an
overview of the ACWMF–DPVM proposed in [19].
Meanwhile, some analysis is presented to lead to our idea.

Let c(i, j), for (i, j) [ V ; {1, . . ., M} × {1, . . ., N}, be the
grey level of a ‘clean’ M-by-N image c at pixel location (i, j)
and [ gmin, gmax] (e.g. [0, 255] for an 8-bit image) be the
dynamic range of c. Denote a noisy image by u0, and in the
random-valued impulse noise model, the observed grey
level at pixel location (i, j) is given by

u0(i, j) = g, with the probability p
c(i, j), with the probability 1 − p

{
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where p defines the image corruption ratio which is also
called noise level and g is uniformly distributed in the grey
level range [ gmin, gmax].

2.1 Adaptive centre weighted median filter

Extensive denoising simulations show that the ACWMF [7] is
an excellent method to remove random-valued impulse noise
when the noise level is not high. The details of the method are
as follows:

Let w denote half of the window size and
L ¼ 2w × (w + 1). Therefore 2L + 1 is the total number of
pixels in a window. Let

y2k
ij = median{u0

i−m,j−n, (2k) S u0
ij| − w ≤ m, n ≤ w} (1)

Here, (2k) S u0
ij means duplicating the central pixel u0

ij for 2k
times and median means the median value of the set. In fact,
y0

ij is equivalent to the output of the standard median filter,
whereas y2k

ij (k ≥ L) has the same value with u0
ij. Hence, k is

limited in the range of [0, L 2 1]. The difference dk is
defined as |y2k

ij − u0
ij|. It can be seen that dk ≤ dk21 for k ≥ 1.

Then a set of thresholds Tks are employed to distinguish the
noisy pixel, where Tk21 ≥ Tk for k ¼ 1, 2, . . ., L 2 1. If any
one of the inequalities dk . Tk is true, then u0

ij is regarded as
a noise candidate and replaced by a median of the
neighbourhood. Otherwise, it is regarded as an uncorrupted
pixel and will not be changed. The choice of Tk is very
crucial in this method. Usually, if a 3 × 3 window is used, w
equals 1 and four thresholds Tk are needed. They are as follows

Tk = s · MAD + dk , 0 ≤ k ≤ 3 (2)

where

MAD = median{|u0
i−m,j−n − y0

ij|: − w ≤ m, n ≤ w} (3)

In practice, dk is chosen as [d0, d1, d2, d3] ¼ [40, 25, 10, 5]
for random-valued impulse noise and s is in the range of
[0, 0.6].

When the noise level p ≤ 30%, the ACWMF is effective.
However, with the raising of p, it fails to detect quite a lot
of noisy pixels. Fig. 1 shows the performance of noise

Fig. 1 Bar graph about the noise detection performance of
ACWMF for ‘Lena’ corrupted at different levels
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detection in the ACWMF for different corrupted ‘Lena’
images. The horizontal axis represents the noise level p and
the vertical axis represents the number of undetected noise
or false-hit noise. For simplicity, we denote the number of
undetected noisy pixels and false-hit ones by ‘miss’ and
‘false-hit’, respectively. From the bars, we can see that there
are little changes of ‘false-fit’ when p increases. However,
the un-detection situation becomes sharply worse. If we
want to use the ACWMF-based noise detector to obtain a
good performance of noise detection, especially for a
serious corrupted image, the ACWMF must be ameliorated.
In Section 3, we will present the improved method.

2.2 DPVM to restore noisy image

Nikolova [17, 18] first advanced the DPVM to remove
outliers and impulse noise. Given the corrupted image u0,
the estimate û of a clean image is defined as the minimiser
of a convex cost-function Fu0 :R2 � R which combines a
data-fidelity term and a regularisation term, weighted by a
parameter b . 0

Fu0 (u) =
∑

(i, j)[V

|uij − u0
ij| +

b

2

∑
(i, j)[V

∑
(m,n)[Vij

w(uij − umn) (4)

where Vij is the set of the four closest neighbours of (i, j), not
including (i, j).

The first term
∑

(i, j)[V |uij − u0
ij| measures the fidelity of

the observed data. ℓ1-norm is designed to better measure
impulse noise and outliers. Some literatures [12–14]
employ ℓ2-norm as the data-fidelity term with the
assumption that the data are corrupted with the Gaussian
noise. However, for impulse noise, ℓ2-norm is not suitable.
Chartrand and Staneva [16] analysed the data-fidelity term
of impulse noise as a typical non-Gaussian noise in detail.
The result shows that ℓ1-norm data-fidelity term is best
suited to the removal of impulse noise. Nikolova describes
it as the non-smooth data-fidelity term. The second term is
a smooth regularisation term that represents the local
variations in the whole image region V. It requires the
restored image to be smooth with the edge preserved. w(t)
is a smooth and convex edge-preserving potential function.
Examples of w(t) are in (5) and (6). b controls the trade-off
between the two terms.

w(t) = |t|a, 1 , a ≤ 2 (5)

w(t) =
�������
a+ t2

√
, a . 0 (6)

The DPVM provides a very effective framework for
processing data contaminated by outliers and impulse noise.
Compared with other median-based filters, the crucial
advantage of the DPVM is that it considers features in the
images such as the possible presence of edges. Some
researchers introduce a ‘good’ noise detector ACWMF into
the DPVM. Then, the DPVM is restricted to the noise set.
This method is the ACWMF–DPVM proposed in [19].

2.3 Iterative procedure combining the ACWMF
with the DPVM

Chan et al. [19] proposed a method to combine the ACWMF
with the DPVM. Noisy pixels are detected using the ACWMF
first and then these pixels are selectively restored by the
DPVM. The noise-free pixels are unchanged. Hence, the
978
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cost-function is altered as (7)

Fu0 (u) =
∑

(i, j)[N

|uij − u0
ij| +

b

2

∑
(m,n)[Vij>N

w(uij − umn)

⎛
⎝

⎧⎨
⎩

+
∑

(m,n)[Vij\N

w(uij − u0
mn

⎞
⎠
⎫⎬
⎭ (7)

where N denotes the noise candidates set. Vij\N denotes those
neighbours of (i, j) which have been detected uncorrupted.

The method is applied iteratively. At the early iteration,
large thresholds in ACWMF are employed to select pixels
that are most likely to be noisy. Then, they are restored by
the DPVM. In the subsequent iterations, the thresholds are
decreased to include more noise candidates. Then, they are
also restored by the DPVM. In practice, four iterations are
needed. Hence, the algorithm requires implementation of
the ACWMF as well as the DPVM four times. The
ACWMF can be used very quickly. However, the
application of the DPVM is the most time-consuming
because it requires minimisation of the functional (7).
Therefore this disadvantage limits its application in practice
greatly. In Section 3, we offer our strategy to overcome this
drawback.

3 Improved decision-based DPVM

To obtain a better noise detection ability, we employ the
variable window technique in the ACWMF and name it as
improved adaptive center weighted median filter
(IACWMF). Based on the method, we use a fast iteration
strategy to give different marks for the different classes of
noise candidates. Then, the DPVM is applied only once to
restore all the selected noise with different weight between
the data-fidelity term and the smooth regularisation term
according to the noise marks. Besides, a method for
estimating the noise level p is presented. In the following,
we describe our method in detail.

3.1 Improved adaptive centre weighted median
filter

As described in the previous analysis in Section 2, the un-
detection situation of the ACWMF becomes worse when
the noise level increases. The reason is that there are very
few noise-free pixels in the 3 × 3 filtering window hence
many ‘bad’ pixels destroy the effectiveness of the ACWMF.
Therefore when the image is highly corrupted, more
pixels should be added to guarantee enough correct local
information. In other words, the window size must be
enlarged. At the same time, it cannot be too large because
the central pixel is similar only to its nearest neighbour.
Otherwise, the false-hit will become more serious.
Therefore the size of the window is a trade-off between the
un-detection and the false-hit. It is crucial in noise
detection. Usually, a square window like (2w + 1) ×
(2w + 1) is chosen. w denotes half of the window size.
Some methods like DWMF [10] use a 5 × 5 window to
enlarge the neighbour. However, in our method, we
consider windows with other shapes. Within the scope of a
3 × 3 square window to a 5 × 5 one, there are other
window types shown in Fig. 2. The best trade-off between
the un-detection and the false-hit may be obtained by one
IET Image Process., 2012, Vol. 6, Iss. 7, pp. 976–985
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of them. Lots of experiments have been conducted to count
the total number of undetected noise and false-hit noise
using these windows. The results show that the best
window type depends on the noise level p (as shown in
Table 1).

We describe our IACWMF as follows. When p ≤ 30%, the
IACWMF is equivalent to the ACWMF. When p . 30%, the
calculation of y2k

ij and MAD in the ACWMF are changed as
(8) and (9), respectively. S is the set of coordinates included
in the selected window. For example, if we choose ‘window
2’ as Fig. 2b, S is (10). Hence, the dks of every pixel is
changed with y2k

ij because dk is defined as |y2k
ij − u0

ij|. In the
fourth part of the section, we will give a simple and
effective scheme for estimating p to guide the choice of
window type

y2k
ij = median{u0

i−m,j−n, (2k) S u0
ij|(m, n) [ S} (8)

MAD = median{|u0
i−m,j−n − y0

ij|:(m, n) [ S} (9)

S = {( − 2, − 1), ( − 2, 0), ( − 2, 1), (1, − 1), (1, 0), (1, 1)

(0, − 2), (0, − 1), (0, 0), (0, 1), (0, 2)

(1, − 1), (1, 0), (1, 1), (2, − 1), (2, 0), (2, 1)} (10)

3.2 Mark noise using a fast iteration strategy

Random-valued impulse noise owns a random grey level
uniformly distributed in the interval like [0, 255]. The
differences in grey levels between a noisy pixel and its
noise-free neighbours are different. Some are very
significant, others are not. Hence, we can make use of the
differences to classify the noisy pixels.

Let NM(i, j), for (i, j) [ V, be the noise mark of a
corrupted M-by-N image u0 at pixel location (i, j) and
NM(i, j) [ {0, 1/D, 2/D, . . ., 1}. D is a positive integer
which denotes the number of noise category. ‘0’ represents
u0(i, j) noise-free, whereas any other value means u0(i, j)
noisy. Closer NM(i, j) is to 1, greater the difference is
between u0(i, j) and its neighbours. Based on the IACWMF
and the idea of iteration, we propose a fast strategy to get
NM(i, j) for every pixel. At the first iteration, we take large
thresholds in the IACWMF to select noisy pixels and render
their NMs by ‘1 ’. Owing to the large thresholds, these
noisy pixels are much different from their neighbours.
At the same time, they are restored simply by the median of

Table 1 Best choices of window types

Noise level Window type

p ≤ 30% 3 × 3 square window

30% , p , 50% window 1 as Fig. 2a

p ≥ 50% window 2 as Fig. 2b

Fig. 2 Three window types

a ‘Window 1’
b ‘Window 2’
c ‘Window 3’
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its neighbours to generate a new image ‘temp’. In the
subsequent iterations, the thresholds are decreased to select
more noisy pixels in ‘temp’. Their NMs are rendered by
‘(qmax 2 q + 1)/qmax’. q represents the qth iteration, q [ {1,
2, . . . , qmax}. qmax represents the total number of iteration.
Hence, we see qmax is equal to D. If the pixels are not
selected as noise until the end, their NMs are ‘0’. We offer
the steps of calculating NM as follows:

Step 1: Set q ¼ 1 and uq ¼ u0. Initial NM(i, j) ¼ 0 for every
(i, j) [ V.
Step 2: Set the thresholds T (q)

k as (11) in the IACWMF and
employ the IACWMF to process uq. For a selected noisy
pixel, if its NM(i, j) is zero, set NM(i, j) ¼ (qmax 2 q + 1)/
qmax. At the same time, uq is renewed by the IACWMF to
generate a ‘temp’ image.
Step 3: Set uq+1 ¼ ‘temp’.
Step 4: If q , qmax, set q ¼ q + 1 and go back to step
2. Otherwise, NM is the final noise mark matrix for the
corrupted image u0

T (q)
k = s · MAD + dk + 20 · (qmax − q), 0 ≤ k ≤ 3 (11)

In practice, qmax is set by four. So, NM(i, j) [ {0, 1/4, 2/4, 3/
4, 1}. All the pixels with non-zero noise marks are included in
the noise candidates set N and other pixels are included in the
noise-free candidates set N c. Although iterative, this marking
procedure is not very time-consuming because each
implementation of the IACWMF is fast.

3.3 Weight-adjustable DPVM to restore noisy
image

After getting different marks for the different classes of noise
candidates, we apply the DPVM only once to restore all the
selected noise candidates in N with adjustable weight
according to the noise marks. The noise-free pixels in N c

are unchanged.
Similar to the description in Section 2.2, the second term in

(4) plays the role of edge-preserving smoothing. b is a weight
that controls the trade-off between the two terms. If a noisy
candidate is very different with its neighbours in the grey
level, it is reasonable to increase the weight of the smooth
term to make smooth stronger when restoring. Since the
noise mark NM(i, j) represents the degree of difference
between the pixel in (i, j) and its neighbours, we can define
an adjustable weight be as (12). Through the weight-
adjustable DPVM, we do not need to perform DPVM four
times such as in [19] when restoring different classes of
noise candidates. This speeds up the whole denoising
algorithm evidently.

be = b0 · f (NM (i, j)) (12)

Here, b0 is the upper bound of weight added to the smooth
term. It is set to a fixed value. f is a monotone increasing
function with the noise mark as its variable. Larger NM(i, j)
is, greater weight is added to the smooth term. We choose a
linear function f (t) ¼ t owing to its simplicity and
effectiveness. Hence, be can be calculated as (13).

be = b0 · NM (i, j) (13)
979
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Then, the cost-function in (7) is altered as (14)

Fu0 (u) =
∑

(i, j)[N

|uij − u0
ij| +

b0 · NM (i, j)

2

⎧⎨
⎩

·
∑

(m,n)[Vij>N

w(uij − umn)

⎛
⎝

+
∑

(m,n)[Vi, j\N

w(uij − u0
mn)

⎞
⎠
⎫⎬
⎭ (14)

The choice of algorithm to minimise the functional Fu0 (u) is
crucial to speed. In order to operate as fast as possible, we
employ Newton’s method with a favourable initial guess to
guarantee convergence (see [20] for more details). The
convergence rate of the minimisation scheme is very fast.
Then, we obtain the restored image û.

3.4 Estimation of the noise level p

For the corrupted images in the simulation, we know the
precise value of the noise level p before denoising.
However, in practical application, p is unknown. In our
method, we need to choose the best window type
depending on p. Hence, here, we offer a possible method to
estimate p. Note that we only need to estimate a rough p,
not a precise value. The method is as follows: extract a
sub-image which is nearly a homogeneous region from the
noisy image (see Fig. 3). A homogeneous region means that
there is not much grey variation in it. Usually, there are
always some small regions which are smoothly varying.
Hence, this extraction should not be much difficult based
on vision.

Denote the sub-image by ‘SI’. The size of the sub-image
can be controlled by the users or be specified as a 15 × 15
square window to include a certain number of pixels in a
homogeneous region. The number of pixels in SI should be
enough for estimation. We then calculate the mean grey
value m1 and variance m2 of SI. There are two sets in SI,
SI1 and SI2. SI1 includes the corrupted pixels, whereas SI2
includes the clean ones. Owing to near uniformity in the
sub-image, we can assume the pixels in SI2 own the same
grey value SI2c. The total pixel number of SI is denoted by
980
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SN. Hence, two equations can be derived

m1 ≃ p · mean{SI1} + (1 − p) · mean{SI2} (15)

m2 ≃
∑SN·p

i=1 (SI1i − m1)2 +
∑SN·(1−p)

j=1 (SI2j − m1)2

SN
(16)

Here, mean{.} denotes the mean grey level of one set. SI1i is
the grey level of the ith pixel in SI1 and SI2j is that of the jth
pixel in SI2. For (16), we make some changes as follows

m2 ≃
∑SN·p

i=1

((SI1i − mean{SI1}) + (mean{SI1} − m1))2

( )

()/SN + (1 − p)(SI2c − m1)2

Then we derive a simple formula as (17)

m2 ≃ p · var{SI1} + p · (mean{SI1} − m1)2 + (1 − p)

· (SI2c − m1)2 (17)

var{SI1} denotes the variance of grey level in SI1. Note that
the pixels in SI1 are approximately subject to a random
distribution with the grey level uniformly distributed in the
interval [0, 255]. Hence, mean{SI1} and var{SI1} are
�255/2 and 2552/12, respectively.

Solve (15) and (17) simultaneously and p is obtained. The
operation can be carried out on several sub-images and the
average value is a rough estimation of p. We have
conducted some tests and the results are substantially correct.

Next, we summarise our whole random-valued impulse
noise removal algorithm as follows:

† Estimate the noise level p of a corrupted image and choose
the best window type according to Table 1 for noise detection.
† Based on the IACWMF and the iteration scheme, the noise
candidates are selected and rendered with different noise
marks.
† Restore the selected noise candidates one-time by a
weight-adjustable DPVM and get the final restored image.

Our algorithm is fast enough for being ported into practical
applications. In Section 4, we will show its low time
complexity.
Fig. 3 Extract a homogeneous region from the corrupted image

a Corrupted ‘Lena’ image with 40% random-valued impulse noise
b Extracted region from a
c Corrupted ‘Bridge’ image with 40% random-valued impulse noise
d Extracted region from c
IET Image Process., 2012, Vol. 6, Iss. 7, pp. 976–985
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Table 2 PSNRs (MSSIMs) results of restored images with p ¼ 10 and 30% random-valued impulse noise

Method p ¼ 10% p ¼ 30%

‘Lena’ ‘Barbara’ ‘Bridge’ ‘Boat’ ‘Lena’ ‘Barbara’ ‘Bridge’ ‘Boat’

noisy image 19.19(0.3147) 18.84(0.4188) 18.83(0.5049) 19.27(0.3842) 14.46(0.1150) 14.05(0.1899) 14.03(0.2251) 14.56(0.1562)

SMF 33.81(0.9108) 24.91(0.7953) 26.01(0.7712) 29.84(0.8360) 28.08(0.7938) 22.91(0.6691) 23.27(0.6561) 26.18(0.7296)

ACWMF 37.53(0.9744) 26.94(0.9183) 28.70(0.9110) 32.70(0.9520) 27.99(0.7989) 23.41(0.7326) 23.88(0.7498) 26.47(0.7851)

NMMF 37.26(0.9723) 27.19(0.9224) 28.03(0.9014) 32.11(0.9495) 31.86(0.9045) 24.41(0.8138) 25.03(0.7944) 28.46(0.8613)

DWMF 36.91(0.9586) 26.14(0.8913) 27.91(0.8994) 32.49(0.9481) 32.67(0.9182) 24.11(0.7910) 24.73(0.7500) 28.30(0.8707)

ACWMF-DPVM 38.64(0.9794) 27.11(0.9225) 28.98(0.9131) 33.03(0.9552) 33.11(0.9285) 24.89(0.8452) 26.15(0.8315) 29.53(0.8881)

our method 38.66(0.9797) 27.32(0.9261) 29.25(0.9186) 33.26(0.9573) 33.22(0.9316) 24.96(0.8474) 26.21(0.8336) 29.60(0.8906)

Table 3 PSNRs (MSSIMs) results of restored images with p ¼ 50% and 60% random-valued impulse noise

Method p ¼ 50% p ¼ 60%

‘Lena’ ‘Barbara’ ‘Bridge’ ‘Boat’ ‘Lena’ ‘Barbara’ ‘Bridge’ ‘Boat’

noisy image 12.27(0.0622) 11.87(0.1057) 11.83(0.1209) 12.38(0.0866) 11.46(0.0463) 11.08(0.0782) 11.04(0.0892) 11.53(0.0614)

SMF 21.67(0.4922) 19.21(0.4060) 19.24(0.4432) 21.01(0.4830) 18.91(0.3321) 17.16(0.2892) 17.20(0.3253) 18.66(0.3474)

ACWMF 20.92(0.4388) 18.85(0.4116) 18.88(0.4682) 20.43(0.4664) 18.16(0.2805) 16.64(0.2784) 16.70(0.3305) 17.98(0.3183)

NMMF 26.78(0.7635) 22.02(0.6316) 21.77(0.6073) 24.51(0.6982) 23.04(0.6118) 19.81(0.4841) 19.63(0.4766) 21.76(0.5641)

DWMF 29.18(0.8395) 22.91(0.6924) 22.95(0.6503) 25.86(0.7517) 26.35(0.7412) 21.70(0.5971) 21.37(0.5486) 23.91(0.6660)

ACWMF-DPVM 27.27(0.7662) 22.53(0.6823) 22.82(0.6745) 25.28(0.7231) 23.45(0.5953) 20.37(0.5298) 20.44(0.5399) 22.33(0.5751)

our method 30.01(0.8818) 23.30(0.7261) 23.26(0.6920) 26.37(0.7869) 27.59(0.8198) 22.38(0.6544) 21.87(0.5721) 24.64(0.7134)
4 Simulation and results

In our experiments, four images are chosen as the test images
corrupted by different levels of random-valued impulse noise.
They are ‘Lena’, ‘Barbara’, ‘Bridge’ and ‘Boat’. Every image
is an 8-bit grey level image with 512 × 512 size. A range of
noise levels varying from 10 to 60% with increments of 10%
are tested. The peak signal-to-noise ratio (PSNR) [1] between
the restored image and the original image is first selected as
IET Image Process., 2012, Vol. 6, Iss. 7, pp. 976–985
doi: 10.1049/iet-ipr.2011.0312
the performance index. The restored results are required to
have high PSNRs. It is defined as follows

PSNR = 10 log10

2552

(1/MN )
∑

i, j (ûij − cij)
2 (18)

where MN is the image size; ûij and cij denote the pixel values
of the restored image and the original image, respectively.
Fig. 4 ‘Lena’ restoration results of different filters

a Corrupted Lena image with 50% random-valued impulse noise
b Restored image by SMF
c Restored image by ACWMF
d Restored image by NMMF
e Restored image by DWMF
f Restored image by ACWMF-DPVM
g Restored image by our method
h Original image
981
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Fig. 5 ‘Boat’ restoration results of different filters

a Corrupted boat image with 50% random-valued impulse noise
b Restored image by SMF
c Restored image by ACWMF
d Restored image by NMMF
e Restored image by DWMF
f Restored image by ACWMF-DPVM
g Restored image by our method
h Original image
PSNR is based on pixel-wise signal differences, which
ignores the underlying signal structure. Therefore we
choose another index named structure similarity index
measure (SSIM) proposed in [21] to compare the local
patterns of pixel intensities between two images. SSIM is
calculated within the local window and every pixel in û
owns its SSIM value. In practice, a mean SSIM (MSSIM)
index is often used to evaluate the overall image quality.
If û is more similar to c, MSSIM is closer to 1.

In order to obtain the best denoised images, we tune some
parameters to the best values. s is set to 0.3 in the IACWMF.

Fig. 6 Mirror frame in the restored Lena images of 50% corrupted
ratio

a Restored image by ACWMF
b Restored image by ACWMF-DPVM
c Restored image by DWMF
d Restored image by our method
982
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The edge-preserving potential function is chosen as
w(t) ¼ |t|a and a is set to 1.3. b0 is set to 2 as the upper
bound of the weight. Then, the adjustable weight is
be [ {b0/4, 2b0/4, 3b0/4, b0}.

Fig. 7 Computation time of restoring 10– 60% corrupted ‘Lena’
using ACWMF–DPVM and our method
Table 4 Comparison of detection results for the image ‘Lena’ corrupted by random-valued impulse noise

Method 40% 50% 60%

Undetected False-hit Total error Undetected False-hit Total error Undetected False-hit Total error

ACWMF 26 194 2202 28 396 39 210 3668 42 878 56 189 5772 61 961

NMMF 15 734 9838 25 572 19 165 16 356 35 521 23 936 22 275 46 211

DWMF 14 177 6188 20 365 14 658 9113 23 771 18 875 9638 28 513

ACWMF-DPVM 16 408 1699 18 107 24 053 1942 25 995 36 250 2584 38 834

our method 10 912 5384 16 296 12 082 8870 20 952 16 361 9034 25 395
IET Image Process., 2012, Vol. 6, Iss. 7, pp. 976–985
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4.1 Denoising performance

To test the noise removal capability of our proposed method,
some other random-valued impulse noise filters are also tested
for comparison purpose. They are standard median filter
(SMF) [2], ACWMF [7], noise map-based median filter
(NMMF) [8], directional weighted median filter (DWMF)
[10] and ACWMF–DPVM [19]. All the parameters in these
methods are set as the values recommended in the original
paper.
IET Image Process., 2012, Vol. 6, Iss. 7, pp. 976–985
doi: 10.1049/iet-ipr.2011.0312
Tables 2 and 3 list the PSNR and MSSIM values of
restored images with random-valued impulse noise level
p ¼ 10, 30, 50 and 60% for ‘Lena’, ‘Barbara’, ‘Bridge’ and
‘Boat,’ respectively. The bold numbers are the best values
in corresponding columns. Clearly, our proposed method
achieves the highest PSNRs and MSSIMs. We present the
restored images of the 50% corrupted ‘Lena’ and ‘Boat’ in
Figs. 4 and 5. From them, we see that in the case of a high
noise level like 50%, there are apparent noise patches in the
restored images of ‘SMF’, ‘ACWMF’, ‘NMMF’ and
Fig. 8 Potential application of our algorithm in the satellite image restoration

a 20% corrupted satellite image ‘San-francisco’
b Restored image of a by our algorithm
c 40% corrupted satellite image ‘San-francisco’
d Restored image of c by our algorithm
e Original satellite image ‘San-francisco’
983
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‘ACWMF–DPVM’. The reason is that these methods use the
fixed square window with 3 × 3 size to provide a
neighbourhood, which inevitably leads to quite a lot of
noisy pixels being undetected. Although this disadvantage
is overcome to some extent by the ‘DWMF’ and our
method, that all have a larger window size; however, the
DWMF uses a 5 × 5 window for all noise levels so that it
causes a little bit more blur. The ACWMF–DPVM
preserves details well but the undetected pixels seriously
destroy the visual performance of the restored images. Our
method not only removes lots of noise, but also preserves
more details. In Fig. 6, the details of the mirror frame in the
restored images of 50% corrupted ‘Lena’ are magnified.
We find that our method obtains a best compromise
between noise-removal and detail-preservation compared
with the ACWMF, ACWMF–DPVM and DWMF.

4.2 Noise detection performance

In addition to comparing the denoising performances, the
capability of noise detection is also compared. In Table 4,
we list the number of undetected noisy pixels, false-hit
pixels and total error-detected pixels about the ACWMF,
NMMF, DWMF, ACWMF–DPVM and our method in
40–60% corrupted situations. Since we employ the variable
window technique to detect noise, the number of undetected
noisy pixels of our method is the smallest. Although the
DWMF uses a larger window, the un-detection is more
serious. It means that the ACWMF-based noise detector is
better than the direction-based one. Of course, the false-hit
numbers are a little bit larger than that of the ACWMF–
DPVM, but the number of total error-detected pixels of our
method is smallest. It means that our algorithm obtains the
best trade-off between the un-detection and the false-hit.
The variable window technique is very successful in noise
detection.

4.3 Computational complexity

Our method improves the ACWMF–DPVM in denoising
performance and time performance. Here, we compare the
CPU time of restoring 10–60% corrupted ‘Lena’ in seconds
using the two methods in the platform of MATLAB 2009.
The computer is equipped with a 2.80-GHZ Intel(R)
core(TM) i5 CPU and a 4.0-GB memory. The result is
shown in Fig. 7. The ACWMF–DPVM is obviously slower
than our method. Moreover, with the increase of the
noise level p, our method is much faster than the
ACWMF–DPVM. The reason is that the ACWMF–DPVM
requires four applications of the ACWMF and the DPVM,
which is very time consuming. However, in our method,
the DPVM is employed only once to restore all the selected
noise candidates. Hence, a big advantage of our method
over ACWMF–DPVM is low time complexity.

4.4 A potential application of our work in satellite
image restoration

Satellite images usually suffer from a series of degradation
processes in the imaging and transmission chain including
atmospheric turbulence, optical aberration, transmission
errors and so on. In particular, in the long-distance
communication channels, there may be various adverse
environmental factors to threaten the quality of satellite
images. A certain amount of impulse noise tends to
contaminate images. If the users obtain a noisy satellite
984
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image, it is very necessary to retrieve the wrong
information in some manner. Otherwise, the subsequent
processes for the image will be destroyed to some extent.
Our restoration algorithm can be applied in coping with this
situation. We simulate a degradation process which may
happen in the transmission of satellite images. The noise
ratio is considered in the range of 15–45% and the noise
type is chosen as random-valued impulse noise. Some
typical satellite images are selected [These satellite images
can be downloaded from the website http://www.
satimagingcorp.com/.] and degraded by the corruption
process. Then, we employ our proposed algorithm to restore
them and an example is presented in Fig. 8. From the five
images, we see that the restored images are very close to
the original one. The noise is almost completely removed
and the details are mostly well preserved. Therefore our
proposed algorithm has a potential application in satellite
image restoration.

5 Conclusions

In this paper, we propose an improved decision-based DPVM
for removal of random-valued impulse noise. The ability of
noise removal and the restoring speed are the main
improvements in our algorithm. We choose the more
suitable window type rather than the fixed square window
to detect noise. This modification makes the number of
undetected noisy pixels decrease greatly. Hence, it offers a
good foundation for noise restoration. Considering the
distribution of random-valued impulse noise and the
difference between a noisy pixel and its neighbour, we
classify noise candidates and mark them with different
values using a fast iteration scheme based on the IACWMF.
Then, these noise marks guide the restoration algorithm
DPVM to change the weight adaptively. More importantly,
the weight-adjustable DPVM is implemented only once to
restore all the noise candidates. Such a strategy makes the
whole restoration faster than the ACWMF–DPVM.
Besides, the restored images are better in terms of PSNR,
MSSIM and visual performance than those obtained by
some existing methods. In view of the advantages of speed
and restoration performance, our method can be ported into
practical application.
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